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Letters

Attenuation and Phase-Shift Coefficients in Dielectric-
Loaded Periodic Waveguides

B. MINAKOVIC anp S. GOKGOR

Abstract—Attenuation in a waveguide, periodically loaded with
dielectric disk, i.e., partially filled, can be considerably higher than
when it is completely filled. For a relatively small dielectric loss,
phase coefficients are negligibly affected.

Attenuation and phase-shift calculations have been carried out
for a number of modes propagating in a circular waveguide [1], [2],
periodically loaded with dielectric disks (Fig. 1). The analysis in-
cludes both metal and dielectric losses.
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Fig. 2. ‘Typxc.al solution for attenuation coefficients: TMo1 mode, L/a =0.4, rela-
tive dielectric constant 95 (titanium dioxide); tan ¢ =5 X1074; radius 5.33 mm,

The explicit expressions for attenuation and phase-shift coeffi-
cients were derived by setting up an appropriate complex wave
matrix for each uniform region within one period, then cascading all
matrices, and finally applying Floquet’s theorem to account for
periodicity. The expressions were computer tabulated for a range of
parameters of practical interest, and one of the typical solutions is
given in Fig. 2.

An interesting and somewhat unexpected feature of these results
is that in a number of cases, attenuation is considerably higher when
a waveguide is partially filled, i.e., disk loaded, than when it is com-
pletely filled. This is evident from Fig. 2, where for /;/a=0.32 and
0.24, attenuation is 0.0026 and 0.0030 Np/period, respectively,
against 0.0012 and 0.0016 for a completely filled guide. Similar results
were obtained for TE;; and TEs modes, both in a circular waveguide.
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Phase-shift coefficients are negligibly affected by loss, except in
the vicinity of stopbands, and even then by only about 0.01 percent.
This is a typical figure for relatively low-loss loading but, of course,
it would increase for a very lossy material.
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Comments on “Calculation of Capacitance Coefficients
for a System of Irregular Finite Conductors
on a Dielectric Sheet”

A. B. BIRTLES axp B. J. MAYO

Abstract—An improvement in Patel’s method using triangular
conductor subsections is presented.

Further to the analysis given in the above paper by Patel,! it may
be of interest to note that work of a similar nature has been performed
by the authors of the present letter using conductor subsections in the
shape of triangles as well as rectangles.

In general, this involves a knowledge of integrals of the type

vz zh(y) dxdy
-
Yy 2g(y) '\/3\72 =+ y2 + 2
which, in the case when x, and x; are linear functions of y, describe
in essence the electrostatic potential distribution due to a uniformly
charged triangular sheet. Integrals of this type have been evaluated
in closed form [1], and are given below.
By suitable orientation of the coordinate axes, the triangular sub-
section under consideration may be defined by the three points
(%1, V1), (%2, y1), and (x5, y2). The result then is

I = Z[Fs(ag, ba, ) — Folas, be, 1) — Felas, by, us) + Felan, by, ”1)]

where

" =y/t;

s =/t

a; =(x1yz—xsy1)/(f(yz—y1));

a» = (ay2 — wsy1) /(e — 1))

b =(xs—x)/(y2— )3

by = (x3~xz)/(y~z—y1);

Fe(a, b, u) = FataFs+ (a4 (b%/a)) Fu;

P =u sinh™! [(a+bu)/(1+u®)?];

U =1-+a42abu+ (1 +62)u?;

F5 — (1 +b2)—1/2 log [U1/2+u(1 +b2)1/2+ab(1 +b2)'—‘1/2];

q = (22402 /|al;

¥ =1+(b%/a%);

a =y+((e®+b)/a?);

T = [a((bu+a)?/(au—b) +v ]V

Fy =1/q tan"t (T'/q), for ¢>0;
=—1/T, for ¢=0.

In the case of a right-angled triangle (x;=x1), the last two terms
in the expression for I simplify to — Fi(ay, #s) + Fi(a;, m1), where

Fi(a, ) = a sinh~u/(1 + a®)'?] + usinhe/(1 + u?)12)
+ tan~(1 + a*>+ u?) 2 /an).
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The use of triangular (in addition to rectangular) subsections re-
sults in a more precise modeling of conductors of complex shapes,
particularly when curved edges are involved. This in turn can lead
to a reduction in the total number of subsections required for the
analysis of a specific geometry, accompanied by a similar reduction in
the order of the matrix requiring inversion.

As a consequence, a computational limitation on Patel’s method
may be alleviated to some degree. When consideration is given to the
fact that the matrix will possibly be ill conditioned [2], a smaller
number of subsections is doubly beneficial. It is also shown in [1]
that for a given specified accuracy, a further reduction in the number
of subsections can be achieved by irregular subdivision of conductors
in a manner related to the expected charge distribution. Thus the
smallest subsections are employed where the charge density is chang-
ing most rapidly with position, at conductor edges, for example.
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Comments on ‘“An Analytical Equivalent Circuit
Representation for Waveguide-Mounted
Gunn Oscillators”

D. N. SINGH

In the above paper,! the authors have tried to explain the experi-
mentally observed mode-switching phenomenon in waveguide-
mounted Gunn oscillators on the basis of nonlinear behavior of the
device. It has been shown in Fig. 6(a)! that the device susceptance
decreases to zero at 8.18 GHz, as a result of which the condition of
oscillation given by (4) cannot.be satisfied. This leads to the mode
switching observed at this frequency. In our opinion, the device sus-
ceptance cannot become zero over the entire frequency band of
interest. It is not possible for the dynamic nonlinearities to make the
device susceptance go to zero, even at the mode-switching frequency.
In fact, the device susceptance will always remain capacitive, while
the load susceptance presented to the device chip can become zero,
inductive, or capacitive, depending upon the operating frequency
and the particular circuit parameters. For steady-state oscillations,
the load susceptance presented to the device chip should always be
inductive, and the frequency switching may occur once the load
susceptance becomes capacitive. However, the load conductance
presented to the device chip should also be lower than the device
conductance for the steady-state oscillations to build up. It is just
possible that the load conductance may be more favorable for Ag
mode of operation rather than for Ag/2 mode of operation. This may
also cause mode switching, as pointed out by Eisenhart and Khan
[1]. It is highly probable that the mode switching is caused by this
effect, rather than due to the nonlinearity of the device parameter as
pointed out by Jethwa and Gunshor.

It has also been mentioned? that the mode switching also occurs
in the case of reduced height waveguide cavities. The mode-switching
frequency has been reported to be 9.3 GHz—a value much higher
than in the case of full height waveguide. However, no mention has
been made of the height of the waveguide used during these investi-
gations. This is an important parameter, as the actual mode-switch-
ing frequency will be very much dependent on the height of the
waveguide.

Thus it is clear from the above discussions that it is the charac-
teristics of the circuit, and not of the device, which are responsible
for the phenomenon of mode switching and it should be possible to
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avoid the mode switching over a frequency band of interest by suit-
able circuit design.

REFERENCES

[1] R. L. Eisenhart and P. J. Khan, “Some tuning characteristics and oscxllauon
conditions of a waveguide-mounted transferred-electron diode oscillator,” IEEE
Trans. Electron Devices, vol, ED-19, pp. 1050-10S55, Sept. 1972,

Reply? by C. P, Jethwa® and R. L. Gunshor*

It is clearly stated in our paper that we have not tried to explain
the experimentally observed mode switching on the basis of any single
aspect of the device—circuit interaction. What we have done is to
describe what the linear model indicates is occurring in the mode-
switching regions of the tuning curves. The question of nonlinearity
enters in the observation that in the region of mode switching, the
experimentally observed tuning curves tend to pull up slightly from
the curves predicted using the linear device mode. This effect, com-
bined with the observation of nonsinusoidal device waveforms in this
region, tends to support the suggestion that nonlinear aspects of the
device behavior affect mode switching.

Singh makes the rather obvious comment that mode switching
may take place from the Ag/2 to the Ag mode as a switch to a more
favorable load conductance. A careful reading of our paper will show
that we also make this observation (see Section IV), and in fact we
show that the load resistance rises rapidly just before mode switching
(see our Fig. 7).

It is not difficult for us to thmk of the device as essentially capaci-
tive from a physical point of view; however, the concept of steady-
state susceptance is another matter. It is well known that the concept
of device susceptance for a nonlinear device in which there may be
other than the fundamental frequency present is not trivial. In fact,
it can be shown that the device susceptance (at the fundamental fre-
quency) is a function of the amplitude and phase of the other com-
ponents. It is therefore not surprising to see the device susceptance
vary with frequency in such a way as to suggest a large variation in
“capacitance.” We find that when the capacitive susceptance tends
toward zero rapidly, this corresponding to the pulling up of the tuning
curves (nonlinearities?), mode jumping occurs. In the paper by Tsai
et al. 1], one can see a 2 to 1 variation in device susceptance cor-
responding to a 10-percent variation in frequency.

Finally, the reduced height waveguide is one half the full wave-
guide height.
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Trigonometric Functions and the Smith Chart
J. T. SENISE

Abstract—Sines and cosines can be read directly on the Smith
chart.

Smith, in his excellent book on the Smith chart [1], states that
“the sine and cosine functions of « are not directly obtainable from
the Smith chart.”

Actually, ¢in « and cos o« may be obtained very easily, as shown
in Fig. 1.

A straight line joining A (0, 0) to « (“angle of reflection coef-
ficient”) on the peripheral scale of the chart crosses the straight line
through B(1, 0) and D(0, 1) at the point P(p, ¢) of coordinates p
=cCos @, ¢=sin a.
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