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Letters

Attenuation and Phase-Shift Coefficients in Dielectric-

LoadedPeriodic Waveguides

B. MINAKOVIC AND S. GOKGOR

Abstract—Attenuationin a waveguide, periodically loaded with

dielectric disk, i.e., partially filled, can be considerably higher than

when it is completely tilled. For a relatively small dielectric loss,

phase coefficients are negligibly affected.

Attenuation and phase-shift calculations have been carried out
foranumber ofmodes propagating inacircular waveg~lide [I], [2],

periodically loaded with dielectric disks (Fig. 1). The analysis in-

cludes both metal and dielectric losses.
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I?ig. 1. Periodic wavegrude loaded wth dielectric disks.
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Fig. 2. Typical solutlon for attenuation coefficients: TMOI mode, L/a=O.4, rela-
tlve dielectric constant 95 (titanium dloxlde); tan 8 =5 X10–4; radms 5.33 mm.

The explicit expressions for attenuation and phase-shift coeffi-
cients were derived by setting up an appropriate complex wave
matrix for each uniform region within one period, then cascading all
matrices, and finally applying Floquet’s theorem to account for

periodicity. The expressions were computer tabolate dfora.allgeof
parameters of practical interest, and one of the typical solutions is
given in Fig. 2.

Aninterestingaud somewhat unexpected feature of these results
is that ina numberof cases, attenuation inconsiderably higher when

a waveguide is partially filled, i.e., disk loaded, than when it is com-

pletely filled. This is evident from Fig. 2, where for 1,/a=O.32 and
0.24, attenuation is 0.0026 and 0.0030 Np/period, respectively,
against 0.00.12 and 0.0016 for a completely filled guide. Similar results
were obtained for TEH and TEo1 modes, both in a circLilar waveguide.
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Phase-shift coefficients are negligibly affected by loss, except in

the vicinity of stopbands, andeven then by only about 0.01 percent.
This is a typical figure correlatively low-loss loading but, of course,

it would increase for a very Iossy material.
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comments on ~(calculation of Capacitance Coefficients

for a System of Irregular Finite Conductors

on a Dielectric Sheet”

A. B. BIRTLES AND B. J. MAYO

Abstract—An improvement in Patel’s method using triangular

conductor subsections is presented.

Further to the analysis given in the above paper by Patel,’ it may

be of interest to note that work of a similar nature has been performed
by the authors of the present letter using conductor subsections in the

shape of triangles as well as rectangles.
In general, this involves a knowledge of integrals of the type

LIZu .h(Ll) dxdy
I=

VI ..(,) <$’ + Y’ + ~z

which, in the case when %0 and Xk are linear functions of y, describe

in essence the electrostatic potential distribution due to a uniformly

charged triangular sheet. Integrals of this type have been evaluated
in closed form [1 ], and are given below.

By suitable orientation of the coordinate axes, the triangular sub-

section under consideration may be defined by the three points
(x,, y,), (x,, yJ, and (X8, YJ. The result then is

I = t[~~(aj, b,, 242) – ~6(a2, b2, d – ~6(a1! h) z~~) + F,(aI, h, M) 1
where

LIL =yl/t;

U2 =y2/t;

al = (X,y, –X,y,) /(f(y, – y,)) ;

at = (X,y, –X,y,) /(t(y2 –y,)) ;

b, = (x, –xJ/(y2-yl) ;

b, = (x, –X2) /(y, –y,) ;

F6(a, b, U) = F,+aFb+ (a+(b2/~))F11;
F, =ZL sinh–l [(u+ bu)/(l+uz)1f2];
u = 1+a2+2abZL+(l +bz)uz;

Fs =(1 +b’)-’” log [ W+w(l +b’)’’z+czb(l +b’)-”zl ;
~ =(a2+&)/lal,

7 = 1 + (b’/az);

a =7+((a2+b2)2/a2);

T =[a((bu+a)2/(a~ –b)2)+y ]’”;
F,, =1/q tan–l (T/g), for q>O;

=–l/T, forg=O.

In the case of a right-angled triangle (xJ = x,), the last two terms

in the expression for 1 simplify to — FI(UL, Id + F1 (al, W), where

Fl(t3, a) = a sinh-’[u/(t + az)’l’] + u sinh-’[a/(l + ZP)’M]

+ tan-’[(l + a’ + u2)11’/a2L].
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The use of triangular (in addition to rectangular) subsections re-

sults in a more precise modeling of conductors of complex shapes,

particularly when curved edges are involved. This in turn can lead

to a reduction in the total number of subsections required for the

analysis of a specific geometry, accompanied by a similar reduction in

the order of the matrix requiring inversion.

As a consequence, a computational limitation on Patel’s method
may be alleviated to some degree, When consideration is given to the
fact that the matrix will possibly be ill conditioned [2], a smaller

number of subsections is doubly beneficial. It is also shown in [1]

that for a given specified accuracy, a further reduction in the number
of subsections can be achieved by irregular subdivision of conductors
in a manner related to the expected charge distribution. Thus the

smallest subsections are employed where the charge density is chang-
ing most rapidly with position, at conductor edges, for example.
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Comments on ‘(A2z Analytical Equivalent Circuit

Representation for Waveguide-Mounted

Gunn Oscillators”

D. N. SINGH

In the above paper, I the authors have tried to explain the experi-
mentally observed mode-switching phenomenon in waveguide-

mounted Gunn oscillators on the basis of nonlinear behavior of the

device. It has been shown in Fig. 6(a) 1 that the device susceptance

decreases to zero at 8.18 GHz, as a result of which the condition of

oscillation given by (4) cannot. be satisfied. This leads to the mode
switching observed at this frequency. I n our opinion, the device sus-

ceptance cannot become zero over the entire frequency band of
interest. It is not possible for the dynamic nonlinearities to make the

device susceptance go to zero, even at the mode-switching frequency.
In fact, the device susceptance will always remain capacitive, while

the load susceptance presented to the device chip can become zero,
inductive, or capacitive, depending upon the operating frequency

and the particular circuit parameters. For steady-state oscillations,
the load susceptance presented to the device chip should always be
inductive, and the frequency switching may occur once the load

susceptance becomes capacitive. However, the load conductance

presented to the device chip should also be lower than the device

conductance for the steady-state oscillations to build up. It is just

possible that the load conductance may be more favorable for kg
mode of operation rather than for Xg~2 mode of operation. This may

also cause mode switching, as pointed out by Eisenhart and Khan
[1]. It is highly probable that the mode switching is caused by this

effect, rather than due to the nonlinearity of the device parameter as
pointed out by Jethwa and Gunshor.

It has also been mentioned that the mode switching also occurs
in the case of reduced height waveguide cavities. The mode-switching
frequency has been reported to be 9.3 GHz—a value much higher

than in the case of full height waveguide. However, no mention has
been made of the height of the waveguide used during these investi-
gations. This is an important parameter, as the actual mode-switch-
ing frequency will be very much dependent on the height of the
waveguide.

Thus it is clear from the above discussions that it is the charac-
teristics of the circuit, and not of the device, which are responsible
for the phenomenon of mode switching and it should be possible to
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avoid the mode switching over a frequency band of interest by suit-

able circuit design.

REFERENCES

[1] R. L. Eisenhart and P. J, Khan, “Some tuning characteristics and oscillation
conditions of a waveguide-mounted transferred-electron diode oscillator, ” IEEE
Tram. EktYotz Devices, vol. ED-19, pp. 1050-1055, Sept. 1972.

Replyt by C. P, Jethwaa and R, L. Gunshorh

It is clearly stated in our paper that we have not tried to explain
the experimentally observed mode switching on the basis of any single
aspect of the device–circuit interaction. What we have done is to
describe what the linear model indicates is occurring in the mode-
switching regions of the tuning curves, The question of nonlinearity

enters in the observation that in the region of mode switching, the

experimentally observed tuning curves tend to pull up slightly from

the curves predicted using the linear device mode. This effect, com-

bined with the observation of nonsinusoidal device waveforms in this

region, tends to support the suggestion that nonlinear aspects of the

device behavior affect mode switching.

Singh makes the rather obvious comment that mode switching
may take place from the ?tg/2 to the hg mode as a switch to a more
favorable load conductance. A careful reading of our paper will show

that we also make this observation (see Section IW), and in fact we
show that the load resistance rises rapidly just before mode switching
(see our Fig. 7).

It is not difficult for us to think of the device as essentially capaci-

tive from a physical point of view; however, the concept of steady-
state susceptance is another matter. It is well known that the concept

of device susceptance for a nonlinear device in which there may be

other than the fundamental frequency present is not trivial. In fact,
it can be shown that the device susceptance (at the fundamental fre-

quency) is a function of the amplitude and phase of the other com-

ponents. It is therefore not surprising to see the device susceptance
vary with frequency in such a way as to suggest a large variation in

“capacitance.” We find that when the capacitive susceptance tends
toward zero rapidly, this corresponding to the pulling up of the tuning

curves (nonlinearities?), mode jumping occurs. In the paper by Tsai
et d. [1 ], one can see a 2 to 1 variation in device susceptance cor-
respond ng to a 10-percent variation in frequency.

Finally, the reduced height waveguide is one half the full wave-

guide height.
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Trigonometric Functions and the Smith Chart

J. T. SENISE

Abstract—Sines and cosines can be read directly on the Smith

chart.

Smith, in his excellent book on the Smith chart [1], states that
“the sine and cosine functions of a are not directly obtainable from
the Smith chart. ”

Actually, sin a and cos a may be obtained very easily, as shown
in Fig. 1.

A straight line joining A (O, O) to a (’(angle of reflection coef-

ficient”) on the peripheral scale of the chart crosses the straight line

through B(I, O) and D (O, 1) at the point P(p, q) of coordinates p

=COS a, q=sin a.
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